电工基础

电工基础知识_电工技术-电工最常见电路

油浸电力变压器受潮故障分析与处理

时间:2017-02-27 12:09来源:未知 作者:y930712 点击:
油浸电力变压器受潮故障分析与处理 0引言 导致变压器绝缘受潮的最大天敌就是水分。变压器事故措施中规定:要预防变压器绝缘击穿事故,防止水及空气进入变压[1],表明绝缘受潮在引

油浸电力变压器受潮故障分析与处理

  0引言

  导致变压器绝缘受潮的最大天敌就是水分。变压器事故措施中规定:要预防变压器绝缘击穿事故,防止水及空气进入变压[1],表明绝缘受潮在引发绝缘故障的诸多因素中,占有较大比重。为保证变压器安全、经济、健康、稳定地运行,必须在变压器运输、存放、安装、运行、检修及维护等过程中,采取严格的控制措施,防止水分进人变压器内。

  1事故案例

  1.1案例1

  某厂电力变压器,型号SFF10-63000/20,额定电压20士2x2.5%6.3-6.3 kV(低压侧为双绕组) , 2007年5月21日投运。同年11月、在预防性试验中发现.,该变压器低压绕组直流泄漏电流偏大(22 0C:参考值33Ua[2]),极化指数、绝缘电阻和吸收比试验数据超标,而油色谱、油耐压、油介损和微水等数据正常。
  1.2案例2

  某厂电力变压器,型号SF-3 l 500/20 ,额定电压20土2x2.5%/6.3 kV ,2007年6月21日投运、同年8月油色谱分析发现CO,H2,CO2的体积分数(Ф)有明显上涨趋势,从历次色谱分析结果看,其他特征气体含量均为恒量,只有上述3种气体的体积分数增长较快,其中H2的体积分数超过注意值标准150uL/L [3], 2008年6月30日色谱分析H2的体积分数达162.39 uL/L。

  2数据分析

  2.1案例1

  (1)交接时低压绕组吸收比小于1.3,极化指数大于1.5,但绝缘电阻大于10 GΩ ,吸收比仅作参考[2]。2007年11月08日检修前绝缘电阻纵向比较下降明显,且R60S与R15S、之差不超过150 MΩ,低压绕组吸收比小于1.3,极化指数小于1.5,可初步判断变压器绝缘受潮。


  (2)检修前较交接时泄漏电流增加了6~7倍,且接近规程规定的200G参考值33uA;介损值变化超过100%,但绝对值较小;而油色谱、油耐压、油介损及微水数据正常,可能是绝缘局部轻微受潮[3]。


  3绝缘受潮原因分析

  3.1案例1

  (1)变压器安装吊罩检查时,器身暴露在空气中受潮,注油前真空处理不彻底,造成水分在绝缘中集中。

  (2)可能由于设备出厂时未充分干燥,绝缘纸和纸板维素吸附的水分在运行一段时间之后逐渐析出,导致变压器低压绕组绝缘水平降低、直流泄漏电流增大。


  (3)密封不良,变压器投运后共发现处理渗漏点5个。瓦斯继电器探针阀芯渗油,不停机无法处理;第1组散热器焊接砂眼渗油,A相分接开关渗油均采用堵漏密封胶现场补漏;变压器油位计内漏、低压套管渗油均长达8个月左右,不停机无法处理。这2处长时间的渗漏缺陷没有及时处理,使变压器运行中通过呼吸作用,水分侵人变压器绕组内,造成绕组绝缘受潮。 (责任编辑:admin)

织梦二维码生成器
相关文章
------分隔线----------------------------
栏目列表
推荐内容