电工基础

电工基础知识_电工技术-电工最常见电路

浅析电力电子电路故障诊断(2)

时间:2016-06-15 08:40来源:未知 作者:y930712 点击:
3、参数辨识方法 实时辨识出系统模型的参数,与正常时模型的参数比较,确定故障。常用的有最小二乘法。 模式识别在故障诊断中的应用 电工之家 故障

3、参数辨识方法

  实时辨识出系统模型的参数,与正常时模型的参数比较,确定故障。常用的有最小二乘法。
  模式识别在故障诊断中的应用
电工之家
  故障的模式识别就是从那些反映系统的信息中抽取出反映故障的特征,并根据这些特征的不同属性,对故障进行分类。用模式识别方法进行故障诊断,是根据样 本的数学特征来进行的,因此它不需要精确的数学模型。对于一些被诊断对象数学模型过于复杂、不易求解的问题,模式识别方法也是适用的。另外,在对工业系统 的故障诊断中应尽量利用非数学(包括物理和结构)方面的特征,设计出各种各样的特征提取器,这样将有利于利用对已有系统的知识,有利于减少计算工作量。由 于特征的选择和提取与待识别的模式紧密相关,故很难有某种泛泛的规律可循。目前常用的方法有:最小距离分类法,Bayes分类法,Fisher判别法,从 参数模型求特征,用K-L变换提取特征等。

  基于神经网络的故障诊断方法

  利用神经网络的自学习、自归纳能力,经过一定的训练,建立起故障信号与故障分类之间的映像关系。利用学习后的神经网络,实现故障诊断。神经网络是由大 量的神经元广泛互连而成的网络,这里以BP网络为例加以介绍。BP网络是单向传播的多层前向网络,它由输入层、中间层和输出层组成,中间层可有若干层,每 一层的神经元只接受前一层神经元的输出。BP网络中没有反馈,同一层的节点之间没有耦合,每一层的节点只影响下一层节点的输入。
电工之家
  BP网络一般采取的学习算法是:网络的输出和希望的输出进行比较,然后根据两者之间的差调整网络的权值,最终使误差变为最小。当电力电子电路发生故障 时,如果能够利用神经网络的学习能力,使故障波形与故障原因之间的关系通过神经网络的学习后保存在其结构和权中,然后将学习好的神经网络用于故障诊断,神 经网络就可以通过对当前电压或电流波形的分析,得出故障原因,从而实现故障的在线自动诊断。

  专家系统
电工之家
  由于故障诊断是从被监测和诊断的对象表征去寻找故障的成因、部位,并确定故障的严重程度的,因此,如果把由已知故障去分析系统或设备的运行特性与表征 叫做正问题,那么故障诊断就是逆问题了。这种逆问题的求解明显不同于正问题的求解,而人工智能AI(Artificial Intelligence)技 术中的专家系统ES(Expert System)正是解这种逆问题的有利工具。专家系统是人工智能研究的一个分支,它是通过模拟专家的经验,实现故障诊 断。专家系统的结构如下表所示:一个典型的诊断专家系统通过在线监测并进行数据采集、存贮,然后传送到诊断运行中心,在这里由专家系统进行处理、分析和诊 断,最后将诊断结果和处理建议自动地反馈回运行现场。因此,专家系统是诊断系统中最核心的部分。本文后面将介绍作者在实际中应用专家系统方法进行故障诊断 的实例。 (责任编辑:admin)

织梦二维码生成器
相关文章
------分隔线----------------------------
栏目列表
推荐内容