"漫话交流电
时间:2015-10-29 11:03来源:未知 作者:y930712 点击:
次
有一位参加工作不久的年轻电工,在检修荧光灯电路(图1)时,用万用表交流电压挡分别测量灯管和镇流器上的电压,令他感到意外的是,灯管两端电压为148V,镇流器两端电压为166V,两
有一位参加工作不久的年轻电工,在检修荧光灯电路(图1)时,用万用表交流电压挡分别测量灯管和镇流器上的电压,令他感到意外的是,灯管两端电压为148V,镇流器两端电压为166V,两部分电压加起来竟高达314V,比电源电压220V高出94V!于是,他来找我,让我帮他解开这个谜。我的回答是:这是交流电路中的正常现象,要得到问题的答案,还需要从含有电感的交流电路谈起。
负载为纯电阻的交流电路
接在交流电路中的荧光灯管、白炽灯泡、电炉子、电烙铁、电热水器,等等,都可以看作是纯电阻负载,在电路图上用R表示(图2)。
如果加在纯电阻负载上的正弦交流电压为u=Umsin ωt
在电压的推动下,电阻上将流过正弦交流电流。根据欧姆定律
式中,电流的最大值Im为
由此可见,电压u与电流i是同频率的正弦量,而且相位相同。图3绘出了纯电阻交流电路中电压与电流的波形图及矢量图。
若把电压和电流的最大值换算成有效值,则
这就是纯电阻交流电路的欧姆定律。
电阻是耗能元件,在通过电流时,把它消耗的电能转换成了热能。根据计算电功率的公式,负载上的瞬时功率为p=ui
将各个瞬间的电压u与电流i相乘,可以绘出功率曲线(图4)。由曲线图不难看出,电阻负载上的平均功率为纯电感上的电压与电流不同相
在物理学中,大家已经学过电流的磁效应。当电感线圈通过电流时,电流将产生磁场,磁力线穿链着线圈。当电流发生变化时,穿链线圈的磁力线也随着发生变动。根据电磁感应原理,变动的磁力线将会切割线圈导线,在线圈中产生感应电动势。这种由于线圈自身电流的变化又在线圈自身产生感应电动势的现象,称为自感应。由自感应产生的感应电动势,称为自感电动势,用符号eL表示。显然,自感应是电感线圈中电流变化的必然反应,电流变化的速度(即单位时间Δt内电流的变化量Δi)越大,自感电动势eL也越大。eL与
Δi/Δt成正比。自感电动势具有对抗电流变化的特性。当电流由小变大时,自感电动势与电流的方向相反,阻碍电流的增大;当电流由大变小时,自感电动势与电流的方向相同,阻碍电流的减小。这就意味着自感电动势是线圈中电流变化的一种特殊阻力。
在正弦交流电路(图5)中,流过电感线圈的电流每时每刻都在发生着变化,所以线圈中每时每刻都有自感电动势作用着。我们画出正弦电流的波形图(图6),把正弦电流的一个周期分成许多相等的时间段
Δt。可以看到,在各个时间段,电流的变化量Δi1、Δi2……Δi5是各不相同的。不难看出,电流变化到趋近于零值瞬间,Δi/Δt最大,自感电动势eL也达到最大值;电流变化到趋近于最大值瞬间,Δi/Δt趋近于零,自感电动势eL也达到零值。在第一个四分之一周期,电流由零值向最大值连续增长,自感电动势与电流的方向相反;在第二个四分之一周期,电流由最大值连续变化到零值,自感电动势与电流的方向相同。由此可以给出电流i与自感电动势eL的波形图(图7)。为了推动电流流过电感线圈,外加电压u必须与自感电动势eL大小相等、方向相反。这样就得出了电压u的波形图(图7中虚线所示)。从波形图上可以看出,在纯电感负载的交流电路中,电压u在相位上超前电流i90°。根据上述相位关系,可以绘出它们的矢量图(图8)。
(责任编辑:admin) |
织梦二维码生成器
------分隔线----------------------------