电工基础知识_电工技术-电工最常见电路

当前位置: 电工基础主页 > 电工基础 >

采用乘法DAC 移动应用也非常合适

时间:2022-09-10 11:26来源:未知 作者:admin 点击:
你也许知道,某些 DAC 包含可在输出端生成基准电压的 R2R 网络。这些 电阻 都是精密电阻。它们通常用来根据发送到 DAC 的数字值切换 电流 ,从而在输出 放大器 端产生一个电压。采用

你也许知道,某些 DAC 包含可在输出端生成基准电压的 R2R 网络。这些电阻都是精密电阻。它们通常用来根据发送到 DAC 的数字值切换电流,从而在输出放大器端产生一个电压。采用乘法 DAC 时,并未集成输出放大器。这就有可能实现某些非常规应用,并将 R2R 网络用作一个电阻。

感兴趣吗?今天就有请 ADI 医疗健康行业客户的现场应用工程师经理 Thomas Tzscheetzsch 为您讲解“乘法 DAC 如何用于 DAC 以外的应用”。

大多数 DAC 采用固定的正基准电压工作,输出电压或电流与基准电压和设定的数字码的乘积成比例。而对于所谓的乘法数模转换器(MDAC),情况并非如此,其基准电压可以变化,变化范围通常是±10V。因此,通过基准电压和数字码可以影响模拟输出(在这两种情况下都是动态的)。

应用

借助相应的接线,模块可以输出放大、衰减或反转的信号(相对于基准信号而言)。因此,其应用领域包括波形发生器、可编程滤波器和 PGA(可编程增益放大器),以及其他必须调整失调或增益的很多应用。

采用乘法DAC 移动应用也非常合适

图 1 显示了一个带下游放大器的 14 位 MDAC AD5453 ,放大器可根据 DAC 的编程数字码放大或削弱信号。

电路计算

该电路的输出电压 (VOUT) 计算如下:

采用乘法DAC 移动应用也非常合适

除了增益和 DAC 的设定数字码 D 之外,输出电压还受运算放大器电源电压的影响或限制。在所示情况下, ADA4637-1 放大器的电源电压为±15 V 电压,应输出 ±12V 的最大电压,因此其控制范围足够大。增益由电阻 R2 和 R3 确定:

采用乘法DAC 移动应用也非常合适

所有电阻(R1 至 R3)应具有相同的电阻温度系数 (TCR),但不一定要与 DAC 内部电阻的 TCR 相同。电阻 R1 用于根据 R 2 和 R3 及以下关系调整 DAC 内部电阻 (RFB):

采用乘法DAC 移动应用也非常合适

选择电阻时,必须确保运算放大器在最大输入电压时仍处于工作范围内( DAC 可以在 VREF 下处理 ±10 V)。还应注意,放大器的输入偏置电流 (IBIAS) 会被电阻( RFB + R2|| R3)放大,这对失调电压有相当大的影响。选择具有超低输入偏置电流和超低输入失调电压(依据数据手册)的运算放大器 ADA4637-1 正是基于这个原因。为了防止闭环控制系统不稳定或所谓的响铃振荡,在 IOUT 和 RFB 之间插入 4.7 pF 电容;特别推荐将这一做法用于快速放大器。

如前所述,放大器的失调电压会被闭环增益放大。当设置增益的外部电阻发生改变,变化值对应于数字步长时,此值会增加到期望值上,产生微分非线性误差。如果它足够大,可能会导致 DAC 行为非单调。为避免这种效应,有必要选择低失调电压和低输入偏置电流的放大器。

相比其他电路的优势

原则上,如果允许使用外部基准电压源,那么也可以使用标准 DAC,不过标准 DAC 与 MDAC 之间有一些重大区别。标准 DAC 的基准输入只能处理幅度有限的单极性电压。除幅度外,基准输入带宽也非常有限。这在数据手册中用乘法带宽值表示。以 AD5664 16 位 DAC 为例,该值为 340 kHz。乘法 DAC 的基准输入可以使用双极性电压,其也可以高于电源电压。带宽同样高得多—— AD5453 的典型带宽为 12 MHz。

结语

乘法数模转换器的使用不是那么广泛,但其提供了许多可能性。除了高带宽的自制 PGA 以外,移动应用也是非常合适的应用,因为其功耗要求低于 50 μW。

(责任编辑:admin)
相关文章
------分隔线----------------------------
栏目列表
推荐内容