电工基础

电工基础知识_电工技术-电工最常见电路

基于源级耦合结构的正交二分频电路(3)

时间:2024-09-04 12:52来源:[db:来源] 作者:admin 点击:
其他电路 模块, 所以本文保留了尾电流源的使用。 2.2 电路仿真 结果 电路采用TSMC 0.18 μm RF CMOS工艺设计实现,并对整体电路进行了仿真、验证。图5给出
其他电路模块, 所以本文保留了尾电流源的使用。

  2.2 电路仿真结果

  电路采用TSMC 0.18 μm RF CMOS工艺设计实现,并对整体电路进行了仿真、验证。图5给出了当输入时钟信号频率为1.92 GHz、幅度为800 mV时的SCL分频器瞬态仿真结果。从仿真结果可以看到,分频器输出波形周期为1.04 ns,很好地实现了二分频功能;且输出摆幅较大,在800 mV左右。图6给出了二分频器的4个不同相位的瞬态输出,其每个象限相差90°,以便用于后面的基于相位选择技术的双模预分频电路。

  


  由之前分析可知,SCL二分频器的正常工作频率有一定的范围,且与输入时钟信号的幅度有关,因此分频器有一个最大频率锁定范围。图7给出了当输入时钟幅度从200 mV~1 V变化时,其频率锁定范围的变化情况。从图中可以看出,随着输入时钟幅度变大,分频器的锁定范围也变大,当幅度为800 mV时,频率锁定范围为200 MHz~2.8 GHz,有较宽的频率锁定范围,满足VCO输出频率范围的完全覆盖(所应用的VCO调频范围为1.608 GHz~1.92 GHz);本设计的分频器电路在3 V电源电压下、工作频率在1.92 GHz时的功耗为1.15 mW。

  


  本文设计了一种基于源极耦合逻辑技术的高速正交二分频器电路。电路沿用了传统的SCL二分频器结构并对其适当改进,采用动态负载代替电阻负载,使负载阻值随着输入信号变化而变化,有利于工作频率的提高和输出摆幅的增大。电路PMOS和NMOS管采用不同的直流偏置,大大减小了直流工作点选取的复杂度。采用TSMC 0.18 μm RF CMOS工艺进行了设计验证,在1.92 GHz输入时钟频率下能正常实现正交二分频,有较宽的锁定范围,且在3 V电源电压下的电路功耗仅为1.15 mW。
(责任编辑:admin)

织梦二维码生成器
相关文章
------分隔线----------------------------
栏目列表
推荐内容