都以此方式偏压。图2(a)为一pnp三极管在此偏压区的示意图。 EB接面的空乏 区由于在正向偏压会变窄,载体看到的位障变小,射极的电洞会注入到基极,基 极的电子也会注入到射极;而BC接面的耗尽区则会变宽,载体看到的位障变大, 故本身是不导通的。图2(b)画的是没外加偏压,和偏压在正向活性区两种情形 下,电洞和电子的电位能的分布图。 三极管和两个反向相接的pn二极管有什么差别呢?其间最大的不同部分就在 于三极管的两个接面相当接近。以上述之偏压在正向活性区之pnp三极管为例, 射极的电洞注入基极的n型中性区,马上被多数载体电子包围遮蔽,然后朝集电极 方向扩散,同时也被电子复合。当没有被复合的电洞到达BC接面的耗尽区时, 会被此区内的电场加速扫入集电极,电洞在集电极中为多数载体,很快藉由漂移电流 到达连结外部的欧姆接点,形成集电极电流IC。 IC的大小和BC间反向偏压的大小 关系不大。基极外部仅需提供与注入电洞复合部分的电子流IBrec,与由基极注入 射极的电子流InB? E(这部分是三极管作用不需要的部分)。 InB? E在射极与与电 洞复合,即InB? E=IErec。pnp三极管在正向活性区时主要的电流种类可以清楚地 在图3(a)中看出。 图2 (a)一pnp三极管偏压在正向活性区;(b)没外加偏压,和偏压在正向 活性区两种情形下,电洞和电子的电位能的分布图比较。 图3 (a) pnp三极管在正向活性区时主要的电流种类;(b)电洞电位能分布及 注入的情形;(c)电子的电位能分布及注入的情形。 一般三极管设计时,射极的掺杂浓度较基极的高许多,如此由射极注入基极 的射极主要载体电洞(也就是基极的少数载体)IpE? B电流会比由基极注入射极 的载体电子电流InB? E大很多,三极管的效益比较高。图3(b)和(c)个别画出电洞 和电子的电位能分布及载体注入的情形。同时如果基极中性区的宽度WB愈窄, 电洞通过基极的时间愈短,被多数载体电子复合的机率愈低,到达集电极的有效电 洞流IpE? C愈大,基极必须提供的复合电子流也降低,三极管的效益也就愈高。 集电极的掺杂通常最低,如此可增大CB极的崩溃电压,并减小BC间反向偏压的 pn接面的反向饱和电流,这里我们忽略这个反向饱和电流。 由图4(a),我们可以把各种电流的关系写下来: 射极电流 基极电流 集电极电流 (责任编辑:admin) |