2.2电抗率的选择分析 (1)电容器装置侧有谐波源时的电路模型及参数 在同一条母线上有非线性负荷形成的谐波电流源时(略去电阻),并联电容器装置的简化模型如图1所示[3]。谐波电流和并联谐波阻抗为 式中n为谐波次数;n为谐波源的第n次谐波电流;XS为系统等值基波短路电抗;XC为电容器组基波容抗;XL为串联电抗器基波电抗。 由于谐波源为电流源,谐波电压放大率与谐波电流放大率相等,故由式⑴整理推导可得谐波电压放大率 当式(2)谐波阻抗的分子的数值等于零时,即从谐波源看入的阻抗为零,表示电容器装置与电网在第n次谐波发生串联谐振,可得电容支路的串联谐振点 当式(2)谐波阻抗的分母的数值等于零时,即从谐波源看入的阻抗为∞,表示电容器装置与电网在第n次谐波发生并联谐振,并可推导出电容器装置的谐振容量QCX[4]为 系统及元件的参数如表1所示。 (2)避免谐振分析 计算电抗率选择6%时,发生3次、5次谐波谐振的电容器容量,将有关参数代入式(5),得3次、5次谐波谐振电容器容量分别为 由此可见, 2400 kvar的电容器组配置电抗率为6%的串联电抗器不会发生3次、5次谐波并联谐振或接近于谐振。 (3)限制涌流分析 计算电抗率选择6%后,同一电抗率的电容器单组或追加投入时,能否有效抑制涌流,文献[4]中所提供的 涌流峰值的标幺值(以投入的电容器组额定电流的峰值为基准值);Q为电容器组的总容量,Mvar;Q0为正在投入的电容器组的总容量,Mvar;Q¢为所有原来已经运行的电容器组的总容量,Mvar;b为电源影响系数。 已知两套电容器装置均为单组投切 由此可见,2400 kvar的电容器组配置电抗率为6%的串联电抗器,另外一组电抗率为6%的电容器单组或追加投入时,涌流能够得到有效限制。 (4)谐波电压放大率分析 计算电抗率选择6%时,将有关参数代入式(3),经过计算,电容器组对1~7次谐波电压放大率FVN结果如表2所示。 由计算结果可以看出,选择6%的串联电抗器对3次谐波电压放大率FVN为1.21,对5次谐波电压放大率FVN为0.69。经过与现场谐波实测数据比较发现:3次谐波电压放大率FVN与以上理论计算值基本一致,但5次谐波电压放大率FVN的误差较大。文献[5]认为:简化的电路模型对于3次谐波电压放大率FVN的计算有工程价值,但对5次谐波电压放大率FVN的计算无工程价值。2400 kvar的电容器组配置电抗率为6%的串联电抗器,产生了3次谐波放大,且超过公用电网谐波电压(相电压)3.2%的限值[2]。因此可以判断在如此谐波背景下,2400kvar的电容器组配置电抗率为6%的串联电抗器是不恰当的。 (责任编辑:admin) |