那么,哪种 PWM 技术最适合您的电机控制应用?在之前的文章中,我们研究了单象限 PWM 技术,它非常适合成本极其敏感的电机控制应用,在这些应用中,您希望通过改变 PWM 信号的占空比来控制电机的速度。但是电机只能在一个方向上旋转,并在同一方向上产生扭矩。我们还介绍了“H 桥”作为研究其他 PWM 拓扑的跳板。在这篇文章中,让我们来看看如何使用 H 桥构建双向速度控制功率级。特别是,我们将构建一个2 象限驱动器因为它可以产生具有正扭矩的正向运动(第 1 象限),或产生具有负扭矩的反向运动(第 3 象限)。我们将再次选择直流电机进行讨论,因为使用直流电机更容易理解这些概念。
对于象限 1 中的单极性 PWM 操作,当我们向 Q4 施加 PWM 信号时,Q1 连续导通。您可以点击此处观看第 1 象限中单极 PWM 操作的动画 。当 Q4 导通时,从 V总线创建电流路径,通过 Q1,通过电机,通过 Q4,并通过地面返回。在此 PWM 状态结束时,Q4 关闭。由于电机绕组有电感,所以会争取保持电机电流同向流动。电感器保护它的电流就像母亲保护她的孩子一样。它实际上是在说,“别弄乱我的电流!如果你这样做,我会产生任何必要的电压来保持我的电流流动。” 结果,电感器迫使 Q3 的背体二极管导通。但由于 Q1 始终导通,电机电流将通过 Q1 而非直流电源返回。当您考虑时,您会意识到由于 Q1 持续开启,该电路的行为与之前讨论的单象限驱动器完全一样,但有一个例外……如果您希望电机沿另一个方向旋转,只需一直打开 Q3 并改为 PWM Q2。这导致电机反向运行并产生负转矩的象限 3 运行。您可以通过单击查看此过程的动画在这里。
有趣的是,在第一象限和第三象限操作中,无论电流在电机中流向哪个方向,母线电流要么为正要么为零!换句话说,这种 PWM 技术不能再生能量。这是因为感应反激电流被“困”在 H 桥的上半部分,永远不会流回直流母线。这可能是优势也可能是劣势,具体取决于您的应用。如果您永远不必担心再生能源,那么您就不必在设计中增加费用来处理它。另一方面,如果你想回收负载能量,那么这种 PWM 技术对你来说不是一个好的选择。
这种技术的另一个优点是它在任何给定时间只需要一个 PWM 信号。这意味着与某些其他 PWM 拓扑相比,您可以从一个处理器控制更多电机。此外,在任何给定时间只有一个晶体管在开关,因此您的开关损耗最小化。最后,每个 PWM 周期只有一个二极管瞬变事件(当 Q3 背体二极管导通后 Q4 再次导通时)。因此,与我们之前讨论的单象限技术相比,该技术不会产生更多的开关噪声。 (责任编辑:admin) |