当同时需要高直流精度和高带宽时,可能难以实现。工程师常常面对各种挑战,需要不断开发新应用,以满足广泛的需求。一般来说,这些需求很难同时满足。例如一款高速、高压运算放大器(运放),同时还具有高输出功率,以及同样 出色的直流精度、噪声和失真性能。市面上很少能见到兼具所有这些特性的运算放大器。根据电路配置,有几种有效的方法,包括构建复合放大器或围绕高速放大器实施伺服环路。
将两个运算放大器组合在一起,就能将各自的优势特性集成于一体。这样,与具有相同增益的单个放大器相比,两个运算放大器组合可以实现更高的带宽。
复合放大器的配置与同相放大器的配置类似,后者具有两个外部操作电阻R1和R2。将两个串联在一起的运算放大器看作一个放大器。总增益(G)通过电阻比设置,G = 1 + R1/R2。如果R3与R4电阻比发生变化,会影响放大器2 (G2)的增益,也会影响放大器1 (G1)的增益或输出电平。但是,R3和R4不会改变有效总增益。如果G2降低,G1将增加。
复合放大器的另一个特性是具备更高带宽。相比单个放大器,复合放大器的带宽更高。所以,如果使用两个完全相同的放大器,其增益带宽积(GBWP)为100 MHz,增益G = 1,那么–3 dB带宽可以提高约27%。增益越高,效果越明显,但最高只能达到特定限值。一旦超过限值,可能会不稳定。两个增益分布不均时,也会出现这种不稳定的情况。一般来说,在两个放大器的增益均等分布的情况下,可获得最大带宽。采用上述值(GBWP = 100 MHz、G2 = 3.16、G = 10),在总增益为10时,两个放大器组合的–3 dB带宽可以达到单个放大器的3倍。
对于反相电路配置,使用配置为积分器的运算放大器的直流伺服环路是最合适的。对于同相电路,基于运算跨导放大器 (OTA) 的直流伺服环路将是最简单的实现方式。这两个电路如下图 1 和图 2 所示。
图 1:用于反相放大器配置的直流伺服回路
图 2:非反相放大器配置的直流伺服回路
无论您是否要使用去耦电容,这两个电路都是交流耦合的。我在这里用去耦电容表示电路,以强调等效电路将是交流耦合的。
伺服回路实际上移除了直流电压并用参考电压 (Vref) 代替它。系统的精度仅受伺服回路中使用的设备的精度和回路速度的限制。在这两个电路中,您必须平衡高通带宽与伺服放大器的响应时间。如果伺服放大器太快或信号变化太慢,信号将被伺服,对其完整性造成灾难性后果。在实现精确测量之前,系统还将有一个初始稳定时间。 (责任编辑:admin) |