什么是静磁屏蔽?
静磁屏蔽的目的是防止外界的静磁场和低频电流的磁场进入到某个需要保护的区域,这时必须用磁性介质做外壳。静磁屏蔽依据的原理可借助并联磁路的概念来说明。把一高磁导率的材料制成的球壳放在外磁场中,则铁壳壁与空腔中的空气可以看成是并联的磁路。由于空气的磁导率接近于1,而铁壳的磁导率至少有几千,所以空腔的磁阻比铁壳壁的磁阻大的多。这样一来,外磁场的磁感应通量中绝大部分将沿着铁壳壁内“通过”,“进入”空腔内部的磁通量是很少的,这就达到了磁屏蔽的目的。
外壳的厚度和磁导率对屏蔽效果有很明显的影响:外壳越厚、磁导率越高,屏蔽的效果就越好。因此,在重量和体积受到限制的情况下,常常采用磁导率高达几万的坡莫合金来做屏蔽壳,而且壳的各个部分要尽量结合紧密,使磁路畅通。如果要制造绝对的“静磁真空”,则可以利用超导体的“迈斯纳效应”。即将一块超导体放在外磁场中,其体内的磁感应强度永远为零。超导体是完全抗磁体,具有最理想的静磁屏蔽效果,但目前还不能普遍应用。
什么是高频电磁场屏蔽?
高频电磁场屏蔽是防止外界的高频电磁场进入到某个区域。由于电磁场的变化频率很高(例如百万赫兹或更高),场中导体上的感应电荷已不能再看作静止的了(导体不再处于静电平衡状态),因此必须用电磁波在导体中的“贯穿深度”来说明屏蔽的原理:当高频电磁波射向一导体表面,并进入表面后,它会在导体中感应出一个高频交变电流,此电流会激发一个新的电磁波,新激发的电磁波在导体内部与入射的电磁波相位相反、同时导体内电流的产生还导致入射波场能的消耗,结果使得导体内部总的电磁场基本上随深度呈指数衰减,可以用“贯穿深度”来表示衰减的程度。
“贯穿深度”与入射电磁波的频率、导体的电导率及磁导率都有关系:频率越高、电导率越大、磁导率越大“贯穿深度”就越小。当壳罩壁的厚度大于贯穿深度时,壳罩就具有良好的电磁屏蔽作用。高电导率或高磁导率材料制成的壳罩是一种良好的电磁屏蔽装置。提高壳罩材料的电导率或磁导率,增加壳壁的厚度,可以提高电磁屏蔽的效果。
像铝、钢、铁这样的金属,1兆赫左右的电磁波在其中的“透入深度”约百分之几毫米,所以这些金属只要一张纸那么厚就基本可以屏蔽I兆赫的电磁波,尤其是铁,因为它的磁导率很高,故屏蔽效果特别好。如在收音机中,用空芯铝壳罩在线圈外面,使它不受外界电磁场的干扰从而避免杂音。
音频馈线用屏蔽线也是这个道理,示波管用铁皮包着,也是为了使杂散电磁场不影响电子射线的扫描。在金属屏蔽壳内部的元件或设备所产生的高频电磁波也透不出金属壳而不致影响外部设备。高电导率材料制成的屏蔽物对低频磁场的屏蔽效果比较差。例如,在工频50赫时,铜的贯穿深度约为9.4毫米,薄壁铜壳的屏蔽作用很小。在实际应用中,常采用静磁屏蔽措施来屏蔽低频磁场。电磁屏蔽物接地后也可以屏蔽静电干扰。电磁屏蔽物上不能随意开缝,因为电磁屏蔽还利用了涡电流的作用,若缝隙割断了涡电流的通路,屏蔽效果要降低。
电屏蔽、磁屏蔽的原理:
“电屏蔽”的实质是减小两个设备(或两个电路、组件、元件)间电场感应的影响。电屏蔽的原理是在保证良好接地的条件下,将干扰源所产生的干扰终止于由良导体制成的屏蔽体。因此,接地良好及选择良导体做为屏蔽体是电屏蔽能否起作用的两个关键因素。
“磁屏蔽”的原理是由屏蔽体对干扰磁场提供低磁阻的磁通路,从而对干扰磁场进行分流,因而选择钢、铁、坡莫合金等高磁导率的材料和设计盒、壳等封闭壳体成为磁屏蔽的两个关键因素。
“电磁屏蔽”的原理是由金属屏蔽体通过对电磁波的反射和吸收来屏蔽辐射干扰源的远区场,即同时屏蔽场源所产生的电场和磁场分量。由于随着频率的增高,波长变得与屏蔽体上孔缝的尺寸相当,从而导致屏蔽体的孔缝泄漏成为电磁屏蔽最关键的控制要素。
电磁屏蔽和静电屏蔽有相同点也有不同点,相同点是都应用高电导率的金属材料来制作;不同点是静电屏蔽只能消除电容耦合,防止静电感应,屏蔽必须接地。而电磁屏蔽是使电磁场只能透入屏蔽体一薄层,借涡流消除电磁场的干扰,这种屏蔽体可不接地。但因用作电磁屏蔽的导体增加了静电耦合,因此即使只进行电磁屏蔽,也还是接地为好,这样电磁屏蔽也同时起静电屏蔽作用。
(责任编辑:admin) |