2.降低杆塔的接地电阻。杆塔接地电阻增加主要有以下原因: (1)接地体的腐蚀,特别是在山区酸性土壤中,或风化后土壤中,最容易发生电化学腐蚀和吸氧腐蚀,最容易发生腐蚀的部位是接地引下线与水平接地体的连接处,由腐蚀电位差不同引起的电化学腐蚀。有时会发生因腐蚀断裂而使杆塔“失地”的现象。还有就是接地体的埋深不够,或用碎石、砂子回填,土壤中含氧量高,使接地体容易发生吸氧腐蚀,由于腐蚀使接地体与周围土壤之间的接触电阻变大,甚至使接地体在焊接头处断裂,导致杆塔接地电阻变大,或失去接地。 (2)在山坡坡带由于雨水的冲刷使水土流失而使接地体外露失去与大地的接触。 (3)在施工时使用化学降阻剂,或性能不稳定的降阻剂,随着时间的推移降阻剂的降阻成分流失或失效后使接地电阻增大。 (4)外力破坏,杆塔接地引下线或接地体被盗或外力破坏。 高压送电线路的接地电阻与耐雷水平成反比,根据各基杆塔的土壤电阻率的情况,尽可能地降低杆塔的接地电阻,这是提高高压送电线路耐雷水平的基础,是最经济、有效的手段。 针对河池供电局部分线路接地电阻值长期以来偏大,降低了线路的耐雷水平。为确保线路安全运行,对不同的杆塔型式我们采用φ8的园钢进行了接地网统一设计、统一加工,避免了高山大岭上进行施工焊接造成工艺质量不合格等的可能,同时也减少了野外工作量,大大降低劳动强度,加快改造速度。通地改造使杆塔地网的接地电阻值大幅度降低,从而使线路的耐雷水平从理论上得到大大提高。 1.设计接地网改造型式。方案:利用绝缘摇表采用四极法进行土壤电阻率的测试,以及采用智能接地电阻测试仪,直测土壤电阻率。根据测试的土壤电阻率的结果进行比较再根据设计时所给予的接地装置的型式,确定最终的接地体的敷设方案。 有架空地线路的线路杆塔的接地电阻 接地放射线 (1)土壤电阻率在10000欧•米及以上的杆塔:采用八根放射线不小于518米的φ8圆钢进行敷设并焊接。 (2)土壤电阻率在2300~3200欧•米的杆塔:采用八根放射线不小于518米的φ8圆钢进行敷设并焊接。 (3)土壤电阻率在1500~2300欧•米的杆塔:采用八根放射线不小于358米的φ8圆钢进行敷设并焊接。 (4)土壤电阻率在1200~1500欧•米的杆塔:采用八根放射线不小于238米的φ8圆钢进行敷设并焊接。 (5)土壤电阻率在750~1200欧•米的杆塔:采用八根放射线不小于198米的φ8圆钢进行敷设并焊接。 (责任编辑:admin) |